Code No. : 14405

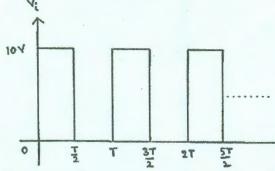
VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD B.E. (CBCS: ECE) IV-Semester Main Examinations, May-2018

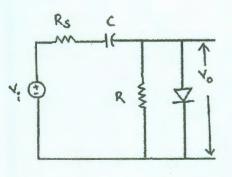
Pulse, Digital and Switching Circuits

Time: 3 hours

Max. Marks: 70

Note: Answer ALL questions in Part-A and any FIVE from Part-B


Part-A $(10 \times 2 = 20 \text{ Marks})$


- 1. How does an RC Low Pass filter behaves when RC>>T? Write the output expression for LPF.
- 2. Draw a clipper circuit to allow the part of input sine wave if input is greater than 2V?
- 3. Write the applications of Schmitt trigger?
- 4. What are the drawbacks of direct coupled binary circuit?
- 5. Simplify the given boolean function F = A+AB+ABC+...
- 6. Why NAND and NOR gates are known as universal gates? Justify.
- 7. Distinguish between combinational and sequential circuits.
- 8. Write the excitation tables for SR and JK Flip-Flops.
- 9. What is race around condition? When and why does it occur?
- 10. List out the architectural features of Mealy and Moore machines.

Part-B $(5 \times 10 = 50 \text{ Marks})$

- 11. a) Explain the operation of Compensated attenuator.
 - b) A square wave with amplitude 10Volts and repetition frequency 10 kHz is applied to the following circuit with circuit parameters given by

 $R_s = R_f = 100\Omega, R = 20K\Omega, C = 1\mu F, V_{\gamma} = 0.$

Determine the output voltage waveform for few cycles and indicate its voltage levels.

ŀ

- 12. a) Explain the operation of emitter coupled binary circuit and derive the necessary [6] expressions with a neat sketch.
 - b) Show that an astable multivibrator can be used as a voltage to frequency converter. [4]
- 13. a) Simplify the following Boolean expression for minimal POS form using K-map and [6] implement using NOR gates. $F(w, x, y, z) = \pi M(4,5,6,7,8, 12) + \pi d(1,2,3,9,11,14)$.
 - b) Minimize the given function using K-map and for minimized function draw its logic [4] diagram using NAND gates.

 $F(a, b, c, d) = \Sigma m (0, 1, 2, 3, 4, 8, 9, 12).$

[5]

[5]

14. a) Convert the following Flip-I	Flops	[5]
i) D to SR Flip- Flop	ii) D to JK Flip- Flop.	
	function F (a, b, c, d) = Σ m (0, 1, 2, 3, 4, 8, 9, 12). ii) 4×1 multiplexer	[5]
15. a) Design a mod-6 synchronou	s counter using JK Flip-Flops.	[7]
b) List out the merits and deme	$\mathcal{L}^{\alpha}(\mathcal{A}) = \mathcal{L}^{\alpha}(\mathcal{A}) + \mathcal{L}^{\alpha}(\mathcal{A}) = \mathcal{L}^{\alpha}(\mathcal{A})$	[3]
16. a) Derive an expression for fre	equency of UJT Relaxation Oscillator.	[5]
b) Explain the operation of Hig	gh Pass RC circuit to an exponential input.	[5]
17. Answer any two of the following	ng:	
a) Full subtractor using only 2	input NAND gates	[5]
b) 4-bit adder/subtractorc) 3-bit twisted ring counter		[5] [5]
c) 5-on twisted mig counter		[2]
	ଔଔଷ୍ଟରାହା	

 Minemure the proof function using K-map and for minimized function draw its male disgram using NAND gates.

(2) 是法人, (1, 1, 1) m2 ~ (0, 2, 3, 4)